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Problem 1. True or false? [WITHOUT PROOF] The 4 statements are true.

Problem 2. True or false? [WITH PROOF]

(a) False. Take for instance f : R → R given by f(x) = x3. f is differentiable and f ′(x) = 3x2 for all x ∈ R. We
have f ′(0) = 0 but 0 is not a local minimum or a local maximum of f since f(0) = 0 and for all x > 0, f(x) > 0
and for all x < 0, f(x) < 0.

(b) True. f is convex, hence for all t ∈ [0, 1] we have

f (tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′) = 0.

Taking t = 1/2 proves the statement.

Problem 3. (a) The function f(x) = ‖Ax− y‖2 is convex (as seen in class or in homeworks). Hence x is a solution
of (1) if and only if ∇f(x) = 0, i.e.

2ATAx− 2ATy = 0

Since ATA is assumed to be invertible, this equation (which is equivalent to ATAx = ATy) has a unique solution
x∗ = (ATA)−1ATy. We conclude that (1) has a unique solution

x∗ = (ATA)−1ATy = (ATA)−1AT(Ax0 + w) = x0 + (ATA)−1ATw.

(b) The rank of A is equal to the number of non-zero singular values. Here rank(A) = m hence σ1, . . . , σm are all
non-zero and because they are all (by definition of singular values) all non-negative, we get they are all positive
and in particular σm > 0.
U and V are orthogonal, hence UTU = Idn and V TV = Idm. Using these facts we compute

(ATA)−1AT =
(
V ΣT UTU ΣV T)−1

V ΣT UT

=
(
V ΣTΣV T)−1

V ΣT UT

= V Diag(σ−2
1 , . . . , σ−2

m )V TV ΣT UT

= V Diag(σ−2
1 , . . . , σ−2

m )ΣT UT

= V Σ+ UT,

where Σ+ ∈ Rm×n is given by Σ+
i,j = 0 for i 6= j and Σ+

i,i = 1/σi. Hence we get that the singular values of
(ATA)−1AT = V Σ+ UT are σ−1

1 , . . . , σ−1
m .

(c) The spectral norm of (ATA)−1AT is therefore equal to σ−1
m . Hence

‖x∗ − x0‖ = ‖(ATA)−1ATw‖ ≤ ‖(ATA)−1AT‖Sp‖w‖ = 1
σm
‖w‖,

where the inequality above follows from the definition from the spectral norm (see homeworks).
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Problem 4. Let f(x, y, z) = x2 + y2 + z2 and g(x, y, z) = x+ y + z − 1. Both function are continuously differentiable
and ∇g(x, y, z) = (1, 1, 1) 6= 0 for all x, y, z. Therefore, there exists some λ ∈ R such that the solution (x∗, y∗, z∗) of (2)
verifies:

∇f(x∗, y∗, z∗) + λ∇g(x∗, y∗, z∗) = 0.

Since ∇f(x∗, y∗, z∗) = 2(x∗, y∗, z∗) and ∇g(x∗, y∗, z∗) = (1, 1, 1) we get

x∗ = y∗ = z∗ = −λ2 .

Furthermore, x∗ + y∗ + z∗ = 1 because (x∗, y∗, z∗) is solution of (2). This gives

x∗ = y∗ = z∗ = 1
3 .

Problem 5. Let v1, . . . , vd be the right singular vectors of A. The vector bi of the first k principal components of the
point ai is given by

bi =

〈v1, ai〉
...

〈vk, ai〉

 .

(v1, . . . vd) is orthonormal and is therefore an orthonormal basis of Rd. Hence

‖ai‖2 =
d∑

j=1
〈ai, vj〉2 ≥

k∑
j=1
〈ai, vj〉2 = ‖bi‖2.

Problem 6. Let f : R2 → R defined by f(x) = x2
1 + 4x2

2 − 4x1 − 8x2 + 1, for x = (x1, x2) ∈ R2.

(a) The Hessian matrix of f is given by

Hf (x) =
(

2 0
0 8

)
,

for all x ∈ R2. Hence the eigenvalues of Hf (x) are 2 and 8 which are non-negative: Hf (x) is positive semi-definite:
f is therefore convex.

x is a global minimizer of f ⇐⇒ ∇f(x) = 0

⇐⇒
(

2x1 − 4
8x2 − 8

)
= 0

⇐⇒ x = (2, 1).

f has therefore one unique minimizer x∗ = (2, 1).

(b)

w(t+ 1) = x(t+ 1)− x∗

= x(t)− α∇f(x(t))− x∗

= w(t)− α
(

2x1(t)− 4
8x2(t)− 8

)
.

Hence {
w1(t+ 1) = w1(t)− 2α(x1(t)− 2) = w1(t)− 2αw1(t) = (1− 2α)w1(t)
w2(t+ 1) = w2(t)− 8α(x2(t)− 1) = w2(t)− 8αw2(t) = (1− 8α)w2(t).

(c) From the previous question we deduce that

w1(t) = (1− 2α)tw1(0) = (1− 2α)t(−2) and w2(t) = (1− 8α)tw2(0) = (1− 8α)t(−1).

• if 0 < α < 1/4, then (1 − 2α) ∈ (0, 1) and (1 − 8α) ∈ (0, 1). Hence w1(t) and w2(t) go to zero as t → ∞
which gives that x(t) converge to x∗.
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• if α ≥ 1
4 , then 1− 8α ≤ −1 and therefore w2(t) = −(1− 8α)t does not go to zero as t → ∞: w(t) does not

go to zero, hence gradient descent does not converge to x∗.

Problem 7. Let PS be the orthogonal projection onto S = Im(AT) and let x = PS(x∗). By contradiction, assume
that x∗ does not belong to S, hence x 6= x∗. Since x ⊥ (x∗ − x), the Pythagorean theorem gives

‖x∗‖2 = ‖x‖2 + ‖x∗ − x‖2 > ‖x‖2

because ‖x∗ − x‖ > 0 since x 6= x∗. By definition x = PS(x∗), therefore x∗ − x is orthogonal to S = Im(AT) and
therefore to the rows of A. This gives

A(x∗ − x) = 0 thus Ax∗ = Ax.

We conclude that
f(Ax) + λ‖x‖2 < f(Ax∗) + λ‖x∗‖2

which is a contradiction with the fact that x∗ is a global minimizer. We conclude that x∗ ∈ S.

Problem 8. Let x ∈ Rn be an eigenvector of A associated to λ: Ax = λx. Fix i ∈ {1, . . . nn} such that |xi| ≥ |xj |
for all j ∈ {1, . . . , n}. Looking at the ith coordinate of Ax = λx gives

n∑
j=1

Ai,jxj = λxi.

Hence,

|λ||xi| =

∣∣∣∣∣∣
n∑

j=1
Ai,jxj

∣∣∣∣∣∣ ≤
n∑

j=1
Ai,j |xj | ≤ |xi|

n∑
j=1

Ai,j ≤ |xi|d

because the sum of the entries of the ith row of the adjacency matrix A is equal to the degree of the node i which
is assumed to be less than d. Since |xi| 6= 0 (otherwise x = 0 which is not, by definition, an eigenvector of A), we
conclude that |λ| ≤ d.
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