DS-GA 1014: Final Review Questions

Optimization and Computational Linear Algebra for Data Science (NYU, Fall 2018)

Instructor: Afonso S. Bandeira (bandeira@cims.nyu.edu)

- (\star) denotes more difficult problems.
- 1. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be two matrices such that there exists an orthonormal basis of \mathbb{R}^n for which every vector in this basis is an eigenvector of both A and B. Show that AB = BA.
- 2. Let $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{p \times m}$ be two matrices.
 - (a) Show that $||AB||_s \le ||A||_s ||B||_s$.
 - (b) Recall that the condition number of an invertible matrix A is defined as $\kappa(A) = ||A||_s ||A^{-1}||_s$. Show that, for all invertible matrices $A \in \mathbb{R}^{n \times n}$, one has $\kappa(A) \ge 1$, and give an example of a matrix for which $\kappa(A) = 1$.
- 3. Let $A \in \mathbb{R}^{n \times n}$ be a matrix. If v_1 and v_2 are eigenvectors of A with the same eigenvalue, show that any vector in span (v_1, v_2) is also an eigenvector of A.
- 4. Let $A \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_1, \ldots, \lambda_n$. Prove that $||Ax|| \leq \max_i |\lambda_i| ||x||$ for any $x \in \mathbb{R}^n$.
- 5. Let $(t_1, y_1), \ldots, (t_n, y_n) \in \mathbb{R}^2$ be a given data set. Let α^*, β^* be minimizers for the least squares error

$$\min_{\alpha,\beta} \sum_{i=1}^{n} (\alpha + \beta t_i - y_i)^2.$$

Prove that

$$\sum_{i=1}^{n} t_i(\alpha^* + \beta^* t_i - y_i) = 0.$$

6. For $x \in \mathbb{R}^n$ let $||x||_{\infty} = \max_i |x_i|$, i.e., the largest absolute coordinate. Prove that

$$\|x\|_{\infty} \le \|x\| \le \|x\|_{\infty}\sqrt{n}.$$

- 7. Let $A \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_1, \ldots, \lambda_n$ which are all non-negative. Prove that $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$.
- 8. Suppose $A \in \mathbb{R}^{m \times n}$ has rank *m*. Prove that AA^T is invertible.

9. (\star) Consider the optimization problem

$$\begin{array}{ll} \text{minimize}_x & \|x\|^2\\ \text{subject to} & Ax = b \end{array}$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are fixed and $b \in \text{Im}(A)$.

- (a) Prove that any minimizer x^* must belong to $\text{Im}(A^T)$.
- (b) Give a formula for the minimizer x^* , and show it is unique.
- 10. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times k}$ and define the block matrix $C \in \mathbb{R}^{n \times (m+k)}$ by

$$C = [A \ B].$$

Either prove the following statement or give a counterexample:

$$\operatorname{Rank}(C) = \operatorname{Rank}(A) + \operatorname{Rank}(B).$$

- 11. Prove the following converse to the Pythagorean theorem: For any $x, y \in \mathbb{R}^n$, if $||x + y||^2 = ||x||^2 + ||y||^2$ then $\langle x, y \rangle = 0$.
- 12. Let $u_1, \ldots, u_k \in \mathbb{R}^n$ be orthonormal. For any $x \in \mathbb{R}^n$ prove that

$$\sum_{i=1}^k \langle x, u_k \rangle^2 \le \|x\|^2.$$

- 13. Suppose $A \in \mathbb{R}^{n \times n}$ is a square matrix whose singular values are all equal to 1. Prove that A is orthogonal.
- 14. Suppose $A, B \in \mathbb{R}^{n \times n}$ are symmetric and there is an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ with $QAQ^T = B$. Prove that A and B have the same eigenvalues.
- 15. Let $v_1, \ldots, v_m \in \mathbb{R}^n$ be orthonormal. Prove that $x \in \text{Span}(v_1, \ldots, v_m)$ if and only if

$$||x||^2 = \langle x, v_1 \rangle^2 + \dots + \langle x, v_m \rangle^2.$$

- 16. Prove that any rank k matrix $A \in \mathbb{R}^{n \times n}$ can be written as $A = UV^T$ where $U, V \in \mathbb{R}^{n \times k}$ and $\operatorname{Rank}(U) = \operatorname{Rank}(V) = k$.
- 17. Let $A, B \in \mathbb{R}^{n \times n}$. Show that
 - (a) $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.
 - (b) For any orthonormal basis $v_1, ..., v_n, \sum_{i=1}^n v_i^T A v_i = \text{Tr}(A)$.
 - (c) If A is symmetric and its eigenvalues are $\lambda_1, ..., \lambda_n$, then $\sum_{i=1}^n \lambda_i = \text{Tr}(A)$.
- 18. Let $A = U\Sigma V^T$ denote the Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$. Using this decomposition, construct the orthogonal projection on the image of A (Im(A)). What about the orthogonal projection on its orthogonal complement?

- 19. Show that for any $x, y \in \mathbb{R}^n$ we have $x^T y = \frac{\|x + y\|^2 \|x y\|^2}{4}$
- 20. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with the (unusual) property that the image space (or column space) Im(A) of A is equal to its kernel (or nullspace) ker(A).
 - (a) What can you say about A^2 ?
 - (b) Give an example of such an A.
- 21. Which of the following functions $f : \mathbb{R}^n \to \mathbb{R}$ are convex? (justify your answer)
 - (a) $f(x) = ||x||^2$,
 - (b) $f(x) = -||x||^2$,
 - (c) $f(x) = -(e_1^T x)^3$
 - (d) $f(x) = -e_1^T x$,
- 22. Let A and b be given by:

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \text{ and } b = \begin{bmatrix} 6 \\ 2 \end{bmatrix}.$$

- (a) Write the quadratic $f(x) = x^T A x b^T x$ associated with the above matrix in terms of x_1, x_2 , the entries of x.
- (b) Determine the points for which the gradient vanishes. Are they local/global maxima, local/global minima, or neither (saddle points)?.
- 23. Find a basis for the orthogonal complement of the subspace

$$V = \left\{ \begin{bmatrix} x+y\\x+y\\x-y\\x-y\\x-y \end{bmatrix} : x, y \in \mathbb{R} \right\}$$

- 24. (*) Let \mathcal{P}_d denote the space of univariate polynomials p(x) of degree smaller or equal to d, $\deg(p(x)) \leq d$.
 - (a) Is \mathcal{P}_d a vector space? (with the normal adition of polynomials and scalar multiplication)
 - (b) Let \mathcal{D} denote the differentiation operator, meaning that $\mathcal{D}(p(x)) = p'(x)$. For example, $\mathcal{D}(x^2) = 2x$. Prove this operator is linear.
 - (c) What is the kernel $\ker(\mathcal{D})$ of \mathcal{D} ?
 - (d) What is the image space $\operatorname{Im}(\mathcal{D})$ of \mathcal{D} ?
 - (e) For fixed $s \in \mathbb{R}$ consider the operator $T_s : \mathcal{P}_d \to \mathcal{P}_d$ that adds s to the argument: $T_s(p) = p_s$ where $p_s(x) = p(x+s)$.
 - i. Show this map is linear.
 - ii. (*) Represent this operator in terms of \mathcal{D} .

- iii. (*) Suppose we choose the basis $1, x, \ldots, x^d$ for the space \mathcal{P}_d . Show that the matrix corresponding to T_1 has a very nice form. [Hint: Pascal's Triangle.]
- 25. (*) Let $A = U\Sigma V^T$ denote the Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$. Let $A' = U\Sigma' V^T$ where Σ' is obtained from Σ by replacing every entry by zero except for the entry corresponding to the largest singular value.
 - (a) Show that A' is the best rank 1 approximation of A in the Frobenius norm, meaning that A' is the solution to $\min_{B: \operatorname{rank}(B)=1} ||B A||_F$.
 - (b) Show that A' is the best rank 1 approximation of A in the spectral norm, meaning that A' is the solution to $\min_{B: \operatorname{rank}(B)=1} ||B A||$.
- 26. Let $x \in \mathbb{R}^n$ such that ||x|| = 1 and let $H \in \mathbb{R}^{n \times n}$ be given by $H = I 2xx^T$ (H is a so-called Householder matrix). Show that all eigenvalues of H are either $\lambda = 1$ or $\lambda = -1$.
- 27. (\star) Let G denote a d-regular graph on n nodes (a simple graph where every node has degree d). Show that the largest eigenvalue of the adjacency matrix of a d-regular graph is d.
- 28. A matrix $A \in \mathbb{R}^{n \times n}$ is lower triangular if $A_{ij} = 0$ for all j > i. Show that if $A, B \in \mathbb{R}^{n \times n}$ are both lower triangular then AB is also lower triangular.
- 29. Given a matrix $A \in \mathbb{R}^{m \times n}$, which of the following sets $S \subset \mathbb{R}^n$ are a subspace, a convex set that is not necessarily a subspace, or not necessarily a convex set (justify your answer, either with a proof or with a counter example)
 - (a) $S = \{x \in \mathbb{R}^n : \|x\|^2 < 1\}$
 - (b) $S = \{x \in \mathbb{R}^n : ||x||^2 > 1\}$
 - (c) $S = \operatorname{Im}(A)$
- 30. Which of the following functions $f : \mathbb{R}^n \to \mathbb{R}$ are nonconvex, convex, or strictly convex? (justify your answer)
 - (a) $f(x) = e_1^T x,$
 - (b) f(x) = ||x||
 - (c) $f(x) = (e_1^T x)^2$
 - (d) $f(x) = (e_1^T x)^5$
 - (e) f(x) = -||x||,
- 31. Show that $\sum_{k=1}^{n} \sqrt{k} x_k \leq n ||x||$ for all $x \in \mathbb{R}^n$.
- 32. Show that if $A \succ 0$ there exists $T \succ 0$ such that $A = T^2$. Recall that $A \succ 0$ means that A is symmetric and all its eigenvalues are positive.
- 33. Let's say we are given 6 data points (x, y) in 2 dimensions: (-1, -2), (1, -2), (-1, 0), (1, 0), (-1, 2),and (1, 2).

- (a) Describe the result of one-dimensional PCA, attempting to approximate the data by a line.
- (b) Describe the result of linear regression, attempting to write y a an affine function of x.