Optimization and Computational Linear Algebra for Data Science Midterm

October 22, 2019

- The exam ends at the end of the time of the lecture.
- Please justify your answers, proving the statements you make. You are allowed to refer to results shown in lectures/recitations/homeworks as long as you state them precisely, meaning that you should say exactly which hypothesis are needed in the result you use.
- This exam is open book/notes. You are allowed to consult notes and books you bring, but not allowed to use electronic devices.
- If you need to impose extra conditions on a problem to make it easier (or consider specific cases of the question, like taking n to be 2, for example), state explicitly that you have done so. Solutions where extra conditions were assumed, or where only special cases where treated, will also be graded (probably scored as a partial answer).
- The exam has 2 pages. It has 7 question groups that together total 100 points plus extra credit (*). Extra credit points will be added to your total score.
- If you have questions (or find a typo) let me know. Any eventual typo will be announced on the board.

Problem 1 (10 points). Let $A \in \mathbb{R}^{n \times n}$ be a matrix and $y \in \mathbb{R}^n$ be a non-zero vector. Are the following sets subspaces of \mathbb{R}^n ? Justify your answer.

- (a) $E_1 = \{ x \in \mathbb{R}^n \mid Ax = 3x \}.$
- (b) $E_2 = \{ x \in \mathbb{R}^n \mid Ax = y \}.$

Problem 2 (15 points). Let $A \in \mathbb{R}^{n \times m}$, with $m \neq n$. Determine which of the following statements are equivalent. No proof is required here, simply write something like

- « Statements (?),(?),(?),(?) are equivalent to each other, and statements (?),(?),(?),(?) are equivalent to each other.»
- (a) The columns of A are linearly independent.
- (b) The rows of A are linearly independent.
- (c) The equation Ax = 0 has exactly one solution $x \in \mathbb{R}^m$.
- (d) $\operatorname{Ker}(A) = \{0\}.$
- (e) $\operatorname{rank}(A) = n$.
- (f) $\operatorname{rank}(A) = m$.
- (g) The span of the columns of A is \mathbb{R}^n .
- (**h**) $\operatorname{Im}(A) = \mathbb{R}^n$.

Problem 3 (10 points). True or false? For each of the following, give a proof or find a counterexample.

- (a) There are no 4×3 matrices with rank equal to 3.
- (b) For all $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{rank}(A + B) = \operatorname{rank}(A) + \operatorname{rank}(B)$.
- (c) If a vector $x \in \mathbb{R}^n$ is orthogonal to every vector of \mathbb{R}^n then x = 0.

(d) For all $A \in \mathbb{R}^{n \times n}$, if $v_1 \in \mathbb{R}^n$ is an eigenvector of A associated with the eigenvalue λ_1 and if $v_2 \in \mathbb{R}^n$ is an eigenvector of A associated with the eigenvalue $\lambda_2 \neq \lambda_1$, then $v_1 + v_2$ is an eigenvector of A associated with the eigenvalue $\lambda_1 + \lambda_2$.

Problem 4 (10 points). Let S be a subspace of \mathbb{R}^n and P_S be the orthogonal projection onto S. Show that for all $x \in \mathbb{R}^n$,

$$||x||^{2} = ||P_{S}x||^{2} + ||x - P_{S}x||^{2}.$$

Problem 5 (15 points). Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix such that $M^{2019} = 0$. Show that M = 0.

Problem 6 (10 points). Let $A \in \mathbb{R}^{n \times m}$. Show that AA^{T} is invertible if and only is $\operatorname{rank}(A) = n$.

Problem 7 (30 points). Let $A \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^n$. We assume that n < m. We let x^* be a minimizer of the function:

$$f(x) = \|Ax - y\|.$$

- (a) Is x^* the unique minimizer of f? That is, does there exists $x \in \mathbb{R}^m$ such that $x \neq x^*$ and $f(x) = f(x^*)$?
- (b) Show that $Ax^* = P_{\text{Im}(A)}y$, where $P_{\text{Im}(A)}$ denotes the orthogonal projection on Im(A).
- (c) Deduce that for all $x \in \mathbb{R}^m$,

$$\langle Ax, y - Ax^* \rangle = 0.$$

(d) Show that this implies that

$$A^{\mathsf{T}}Ax^{\star} = A^{\mathsf{T}}y.$$

(e) Is the matrix $A^{\mathsf{T}}A$ invertible?

Problem 8 ((*) 5 points). Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix whose eigenvalues are strictly positive. Show that for all $u, v \in \mathbb{R}^n$:

$$(u^{\mathsf{T}}Mv)^2 \le (u^{\mathsf{T}}Mu)(v^{\mathsf{T}}Mv).$$

Problem 9 ((\star) 5 points). Let $A, B \in \mathbb{R}^{n \times n}$ two symmetric matrices that verify AB = BA. Show that there exists an orthogonal matrix P and two diagonal matrices (i.e. matrices with zeros outside of the diagonal) D, D' such that

$$A = PDP^{\mathsf{T}}$$
 and $B = PD'P^{\mathsf{T}}$.

