Session 1: Vector spaces

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

- 1. Recap of the videos
- 2. More about the dimension
- 3. Coordinates

4. Why do we care about all these things?

Application to data science: image compression

The teaching team

Lecturer: Léo Miolane – Im4271nyu.edu leomiolane.github.io/linalg-for-ds.html

Sections leaders:

Alex

In person

Irina

Remote

Carles

Remote

Course components

Three main components:

- 1. Videos
 - 2-3 short videos to watch **before** each lecture

2. Lectures

Deepens the concepts introduced in the videos

3. Recitations

Practice!

Course components

Three main components:

1. Videos

2-3 short videos to watch before each lecture

2. Lectures

Deepens the concepts introduced in the videos

3. Recitations

Practice!

Grades:

- 1. Weekly quizzes (5%)
- 2. Weekly homeworks (40%)
- 3. Exams: Midterm (20%) + Final (35%)

Weekly timeline

Weekly Quizzes and Homeworks

- Quizzes have to be answered on Gradescope, after viewing the videos, but before the associated lecture.
- Homeworks questions are available on the course's webpage and have to be submitted on Gradescope.

Weekly Quizzes and Homeworks

- Quizzes have to be answered on Gradescope, after viewing the videos, but before the associated lecture.
- Homeworks questions are available on the course's webpage and have to be submitted on Gradescope.
- I encourage you to type your homeworks using LaTeX.
 Some instructions and template available on the course's webpage.
- Otherwise, you can scan (using dedicated app) your handwritten work. It has to be legible!!!

Gradescope

DS-GA 1014 Fall 202	E	Entry Code: M2ND83												
DESCRIPTION		THIN	THINGS TO DO											
Edit your course description on the	Course Setting	is page.	Review and publish gra	des for Quiz 1 now t	hat you're all do	ne grading.								
♦ ACTIVE ASSIGNMENTS	RELEASED	DUE (EDT) 🗸		% GRADED 🖨	PUBLISHED	REGRADES								
Homework 1	EP 02	SEP 20 AT 11:00PM	0	0%	\bigcirc	ON	:							
Quiz 2	EP 03	SEP 10 AT 2:00PM	0	0%	\bigcirc	ON	:							
Quiz 1,	UG 23	SEP 10 AT 2:00PN	4	100%	\bigcirc	ON	:							

- Midterm (~ mid-October) and Final will be «take-home exams».
- Limited time: after downloading the Midterm/Final questions, you will have to upload your work within few hours.

Check out the syllabus on the course webpage!

Office hours + feedback

I will have 2 office hours slots (+appointments):

- One during New York 'standard hours'.
- One early morning or late evening for students with a big time difference.

Please fill the Google form with you preferences.

- Feedback, remarks about the lectures / videos / recitations / homeworks ... :
 - email me!
 - Iink for anonymous feedback on the course's website.

Questions on logistics ?

Log	istics												9/3	36

Vector spaces and subspaces

Vector spaces and subspaces

Quick recap of video 1.2

A **vector space** is a set V endowed with two 'nice and compatible' operations + and \cdot that verify:

For all
$$u, v \in V$$
, $u + v \in V$.

For all $u \in V$ and all $\lambda \in \mathbb{R}$, $\lambda \cdot u \in V$.

Example: $V = \mathbb{R}^n$, with the usual vector addition + and scalar multiplication \cdot is a vector space.

Quick recap of video 1.2

A non-empty subset S of a vector space V is called a **subspace** if it is closed under addition and multiplication by a scalar.

Remarks, questions?

Vector spaces and subspaces

Remarks, questions?

Vector spaces and subspaces

Review of Span and linear dependency

Span

Linear dependency

- Vectors x_1, \ldots, x_k are *linearly dependent* if one of them can be expressed as a linear combination of the others.
- They are said to be *linearly independent* otherwise.

Abuse of language: Instead of saying $(x_1, \ldots, x_k \text{ are linearly dependent})$, we should say "the family (x_1, \ldots, x_k) is linearly dependent".

n, nz, nz are linder but ny no are lin independent.

Basis

A family (x_1, \ldots, x_n) of vectors of V is a basis of V if

1. x_1, \ldots, x_n are linearly independent,

$$2. \operatorname{Span}(x_1, \ldots, x_n) = V.$$

The dimension

A useful lemma

Definition of the dimension

Definition

We say that a vector space V has dimension n if it admits a basis (v_1, \ldots, v_n) with <u>n</u> vectors.

The dimension is well defined!

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

- 1. Any family of vectors of V that spans V contains at least n vectors.
- 2. Any family of vectors of *V* that are linearly independent contains at most *n* vectors.

Proof. (D) Let consider
$$(u_1 \dots u_{e_1})$$
 such that
Span $(u_n \dots u_{e_N}) = V$. Then, if I consider
a basis $(v_n \dots v_n)$ of V I have:
 $v_1 \dots v_n \in Span(u_1 \dots u_{e_N}) = V$
 $v_1 \dots v_n \in Span(u_1 \dots u_{e_N}) = V$
 $v_1 \dots v_n \in v_n \in v_n \in v_n \in v_n$
 $v_1 \dots v_n \in v_n \in v_n \in v_n \in v_n$

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

- 1. Any family of vectors of V that spans V contains at least \boldsymbol{n} vectors.
- 2. Any family of vectors of V that are linearly independent contains at most n vectors.

Properties of the dimension

Proposition

Let V be a vector space of dimension n and let $x_1, \ldots, x_n \in V$.

- 1. If x_1, \ldots, x_n are linearly independent, then (x_1, \ldots, x_n) is a basis of V.
- 2. If $\text{Span}(x_1, \ldots, x_n) = V$, then (x_1, \ldots, x_n) is a basis of V.

Very useful to show that a family of vector forms a basis:

Example: $x_1 = (12, 37)$ and $x_2 = (-9, 17)$ form a basis of \mathbb{R}^2 .

$$x_1, x_2$$
 are lin independent, since $\dim(\mathbb{R}^2)=2$
I get that (x_1, x_2) is a basis of \mathbb{R}^2

An inequality

The dimension

24/36

Proof

A bit of vocabulary

Coordinates of a vector in a basis

Definition & Theorem

If (v_1, \ldots, v_n) is a basis of V, then for every $x \in V$ there exists a unique vector $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Coordinates of a vector in a basis

Definition & Theorem

If (v_1, \ldots, v_n) is a basis of V, then for every $x \in V$ there exists a unique vector $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ such that

 $x = \alpha_1 v_1 + \dots + \alpha_n v_n.$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Proof. (2) Existence

$$\mathcal{X} \in \mathcal{V} = \operatorname{Span}(\mathcal{V}_{n} \dots \mathcal{V}_{n})$$
 (because $(\mathcal{V}_{n} \dots \mathcal{V}_{n})$ basis $\mathcal{J}\mathcal{V}$)
hence there exists $\mathcal{A}_{1} \dots \mathcal{A}_{n} \in \mathbb{R}$ such that

Coordinates of a vector in a basis

Exercise

- 1. Show that the vectors $v_1 = (1, 1)$ and $v_2 = (1, -1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u = (x, y) in the basis (v_1, v_2) in terms of x and y.

Exercise

- 1. Show that the vectors $v_1 = (1, 1)$ and $v_2 = (1, -1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u = (x, y) in the basis (v_1, v_2) in terms of x and y.

Why do we care about this?

Application to image compression

- Image = Grid of pixels
- Represented as a vector $v \in \mathbb{R}^n$, for some large n.
- One needs to store n numbers.

 $n = 44 \times 55 = 2420$

Can we do better?

If we want to store an arbitrary image, NO!

«Random» image

Can we do better?

- If we want to store an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some *structure*.

«Random» image

Can we do better?

- If we want to store an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some structure.

«Real» image

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

What do we mean by « structure »?

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

- There exists a basis (w_1, \ldots, w_n) of \mathbb{R}^n in which «real» images $v \in \mathbb{R}^n$ are (approximately) **sparse**.
- This means that the coordinates $(\alpha_1, \ldots, \alpha_n)$ of v in the basis (w_1, \ldots, w_n) contains a lot of zeros.

Store only the $k \ll n$ non-zero coordinates of v (in the w_i 's basis')!

A toy example

Consider n = 2, that is images $v \in \mathbb{R}^2$ with only 2 pixels.

Examples of good bases

Fourier bases (used in .jpeg, .mp3)

- JPEG2000 uses wavelet bases, and achieves better performance than JPEG.
- In Homework 4, you will use wavelets to compress/denoise images.
- The course DS-GA 1013 deepens these concepts!

