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Three main components:
1. Videos

2-3 short videos to watch before each lecture

2. Lectures
Deepens the concepts introduced in the videos

3. Recitations
Practice!

Grades:
1. Weekly quizzes (5%)
2. Weekly homeworks (40%)
3. Exams: Midterm (20%) + Final (35%)
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Weekly Quizzes andHomeworks
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Quizzes have to be answered on Gradescope, a�er viewing the
videos, but before the associated lecture.

Homeworks questions are available on the course’s webpage
and have to be submitted on Gradescope.

I encourage you to type your homeworks using LaTeX.
Some instructions and template available on the course’s webpage.

Otherwise, you can scan (using dedicated app) your
handwritten work. It has to be legible!!!
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Gradescope
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Midtermand Final
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Midterm (≥mid-October) and Finalwill be «take-home
exams».

Limited time: a�er downloading the Midterm/Final questions,
you will have to upload your work within few hours.

Check out the syllabus on the course webpage!



O�ice hours + feedback
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I will have 2 o�ice hours slots (+appointments):
One during New York ’standard hours’.
One early morning or late evening for students with a big time
di�erence.

Please fill the Google form with you preferences.

Feedback, remarks about the lectures / videos / recitations /
homeworks ... :

email me!
link for anonymous feedback on the course’s website.
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Vector spacesandsubspaces



Quick recap of video 1.2
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A vector space is a set V endowed with two ’nice and compatible’
operations+ and · that verify:

For all u, v œ V , u + v œ V .
For all u œ V and all ⁄ œ R, ⁄ · u œ V .

Example: V = Rn, with the usual vector addition+ and scalar
multiplication · is a vector space.



Quick recap of video 1.2
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A non-empty subset S of a vector space V is called a subspace if it
is closed under addition andmultiplication by a scalar.

Example: For all v œ Rn,

Span(v) =
)
⁄v

--⁄ œ R
*

is a subspace ofRn.
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ReviewofSpanand
lineardependency



Span

Review of Span and linear dependency 15/36

The linear span of vectors x1, . . . , xk as the set of all linear
combinations of these vectors.



Linear dependency

Review of Span and linear dependency 16/36

Vectors x1, . . . xk are linearly dependent if one of them can be
expressed as a linear combination of the others.
They are said to be linearly independent otherwise.

Abuse of language: Instead of saying «x1, . . . , xk are linearly
dependent», we should say «the family (x1, . . . , xk) is linearly
dependent».



Basis

Review of Span and linear dependency 17/36

A family (x1, . . . , xn) of vectors of V is a basis of V if
1. x1, . . . , xn are linearly independent,
2. Span(x1, . . . , xn) = V .
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A useful lemma
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Lemma
Let v1, . . . , vn œ V and let x1, . . . , xk œ Span(v1, . . . , vn).
Then, if k > n, x1, . . . , xk are linearly dependent.



Definition of the dimension
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Definition
We say that a vector space V has dimension n if it admits a basis
(v1, . . . , vn)with n vectors.



The dimension iswell defined!
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Theorem
If V admits a basis (v1, . . . , vn), then every basis of V has also n
vectors.

Proof.

⇤



Properties of the dimension
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Proposition
Let V be a vector space that has dimension dim(V ) = n. Then
1. Any family of vectors of V that spans V contains at least n
vectors.

2. Any family of vectors of V that are linearly independent
contains at most n vectors.

Proof.

⇤
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Properties of the dimension
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Proposition
Let V be a vector space of dimension n and let x1, . . . , xn œ V .
1. If x1, . . . , xn are linearly independent, then (x1, . . . , xn) is a
basis of V .

2. If Span(x1, . . . , xn) = V , then (x1, . . . , xn) is a basis of V .

Very useful to show that a family of vector forms a basis:

Example: x1 = (12, 37) and x2 = (≠9, 17) form a basis ofR2.



An inequality
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Proposition
LetU and V be two subspaces ofRn. Assume thatU µ V . Then

dim(U) Æ dim(V ) Æ n.

Ifmoreover dim(U) = dim(V ), thenU = V .



Proof
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A bit of vocabulary
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Definition
Let S be a subspace ofRn.

We call S a line if dim(S) = 1.
We call S an hyperplane if dim(S) = n ≠ 1.
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Coordinates



Coordinates of a vector in a basis
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Definition & Theorem
If (v1, . . . , vn) is a basis of V , then for every x œ V there exists a
unique vector (–1, . . . , –n) œ Rn such that

x = –1v1 + · · · + –nvn.

We say that (–1, . . . , –n) are the coordinates of x in the basis
(v1, . . . , vn).

Proof.

⇤
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Exercise
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1. Show that the vectors v1 = (1, 1) and v2 = (1, ≠1) form a
basis ofR2.

2. Express the coordinates of u = (x, y) in the basis (v1, v2) in
terms of x and y.
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Whydowecareabout this ?



Application to image compression

Why do we care about this ? 32/36

Image = Grid of pixels
Represented as a vector
v œ Rn, for some large n.
One needs to store n
numbers.

n = 44 ◊ 55 = 2420



Canwe do better?

Why do we care about this ? 33/36

If we want to store an
arbitrary image, NO!

However, we are mainly
storing images coming from
the « real world »

These images have some
structure.

«Random» image
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What dowemean by « structure » ?

Why do we care about this ? 34/36

Neighboring pixels are very likely to have similar colors.

There exists a basis (w1, . . . , wn) ofRn in which «real» images
v œ Rn are (approximately) sparse.

This means that the coordinates (–1, . . . , –n) of v in the basis
(w1, . . . , wn) contains a lot of zeros.

Store only the k π n non-zero coordinates of v (in thewi’s basis’) !
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A toy example
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Consider n = 2, that is images v œ R2 with only 2 pixels.



Examples of good bases
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Fourier bases (used in .jpeg, .mp3)

JPEG2000 useswavelet bases, and achieves better
performance than JPEG.
InHomework 4, you will use wavelets to compress/denoise
images.
The course DS-GA 1013 deepens these concepts!
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