Lecture 3.1: The rank

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Rank of a family of vectors

Definition

We define the rank of a family x_1, \ldots, x_k of vectors of \mathbb{R}^n as the dimension of its span:

$$\operatorname{rank}(x_1, \dots, x_k) \stackrel{\text{der}}{=} \operatorname{dim}(\operatorname{Span}(x_1, \dots, x_k)) = 0, \lambda_1 Z_1 5 \dots$$

$$\operatorname{Span}(x_1, x_2) \stackrel{\text{der}}{=} \operatorname{dim}(\operatorname{Span}(x_1, \dots, x_k)) = 2$$

$$\operatorname{Span}(x_1, x_2) \stackrel{\text{der}}{=} \operatorname{dim}(\operatorname{Span}(x_1, \dots, x_k)) = 2$$

$$\operatorname{Span}(x_1, x_2) \stackrel{\text{der}}{=} \operatorname{dim}(\operatorname{Span}(x_1, \dots, x_k)) = 2$$

$$\operatorname{Span}(x_1, x_2) \stackrel{\text{der}}{=} \operatorname{dim}(\operatorname{Span}(x_1, \dots, x_k)) = 0$$

Rank of a matrix

Definition Let $M \in \mathbb{R}^{n \times m}$. Let $c_1, \ldots, c_m \in \mathbb{R}^n$ be its columns. We define $\operatorname{rank}(M) \stackrel{\text{def}}{=} \operatorname{rank}(c_1, \dots, c_m) = \operatorname{dim}(\operatorname{Im}(M)).$ $M = \begin{pmatrix} l & l \\ c_1 & \cdots & c_m \end{pmatrix}$

Example

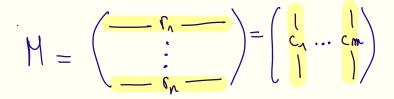
 $\mathfrak{H} = \begin{pmatrix} 1 & 2 & 3 \\ \bigcirc & \bigcirc & 5 \end{pmatrix}$ $\operatorname{Span}(c_1, c_2, c_3) = ?$ G C2 C3 · C1, C2 are two lin. indep vectors of R2 \rightarrow (c₁, c₂) is a basis of \mathbb{R}^2 \rightarrow Span(c_1, c_2) = \mathbb{R}^2 • Span(c_1, c_2, c_3) = R^2 rounle(M) = 2.

« Rank of columns = rank of rows »

Proposition

Let $M \in \mathbb{R}^{n \times m}$. Let $r_1, \ldots, r_n \in \mathbb{R}^m$ be the rows of M and $c_1, \ldots, c_m \in \mathbb{R}^n$ be its columns. Then we have

$$\operatorname{rank}(r_1,\ldots,r_n) = \operatorname{rank}(c_1,\ldots,c_m) = \operatorname{rank}(M).$$



The rank in Data Science

Consider a matrix M of size 1000×500 :

$$M = \begin{pmatrix} - & r_1 & - \\ & \vdots & \\ - & r_{1000} & - \end{pmatrix} \int \underbrace{\text{LOCD rows}}_{}$$

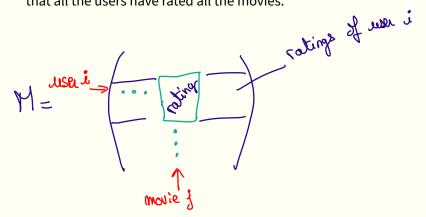
What does it mean to say that $\operatorname{cank}(M) = 5$?

win

The rank in Data Science

Imagine now that

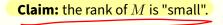
- The rows of M corresponds to Netflix's users.
- The columns of M corresponds to Netflix's movies.
- The entry M_{i,j} is rating of the movie j by the user i, assuming that all the users have rated all the movies.



The rank in Data Science

Imagine now that

- The rows of *M* corresponds to Netflix's users.
- The columns of *M* corresponds to Netflix's movies.
- The entry M_{i,j} is rating of the movie j by the user i, assuming that all the users have rated all the movies.



- The ratings of a user can be obtained as a linear combination of a small number of « profiles ».
- In practice, we do not have access to the full matrix, so we can use this assumption to predict the missing entries.