Video 11.1: Critical points, global and local extrema

Optimization and Computational Linear Algebra for Data Science

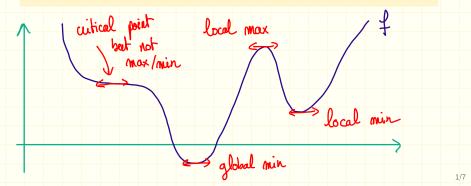
Léo Miolane

Definitions

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. We say that $x \in \mathbb{R}^n$ is

- a critical point of f if $\nabla f(x) = 0$,
- a *global* minimizer of f if for all $x' \in \mathbb{R}^n$, $f(x) \leq f(x')$,
- ► a *local* minimizer of *f* if there exists $\delta > 0$ such that we have $f(x) \le f(x')$ for all *x'* verifying $||x x'|| \le \delta$.



Local extrema are critical points

Proposition

x is a local minimizer of
$$f \implies \nabla f(x) = 0$$
.

Proposition

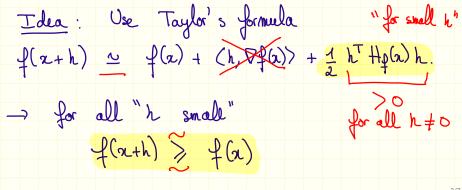
Assume that *f* is convex. Then

$$\nabla f(x) = 0 \iff x$$
 is a global minimizer of f .

Looking at the Hessian

Proposition

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. Let $x \in \mathbb{R}^n$ be a critical point of f, i.e. $\nabla f(x) = 0$. Then, if $H_f(x)$ is positive definite (that is, if all the eigenvalues of $H_f(x)$ are strictly positive), then x is a local minimizer of f.



Looking at the Hessian

Proposition

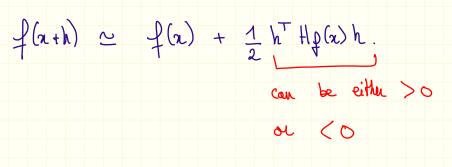
Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. Let $x \in \mathbb{R}^n$ be a critical point of f, i.e. $\nabla f(x) = 0$. Then if $H_{-}(x)$ is negative definite (that is, if all the eigenvalues of

Then, if $H_f(x)$ is negative definite (that is, if all the eigenvalues of $H_f(x)$ are strictly negative), then x is a local maximizer of f.

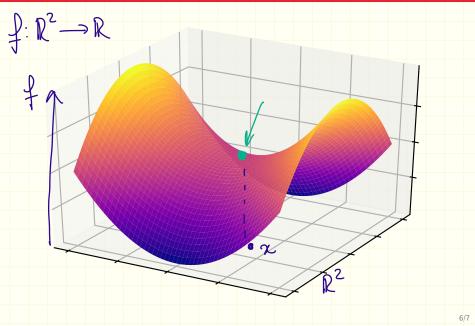
Saddle points

Proposition

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. Let $x \in \mathbb{R}^n$ be a critical point of f, i.e. $\nabla f(x) = 0$. Then, if $H_f(x)$ admits strictly positive eigenvalues and strictly negative eigenvalues, then x is neither a local maximum nor a local minimum. We call x a saddle point.



Saddle points



Example

Study the critical points of $f(x, y) = x^2 + xy^2 - x + 1$. $\nabla f(x) = \begin{pmatrix} 2x + y^2 - 1 \\ 2xy \end{pmatrix}$ Let's find the actical points of f: we solve: $\begin{cases} 2x + y^2 - 1 = 0 \\ 2xy = 0 \end{cases} \iff \begin{pmatrix} y = 0 \\ 2x - 1 = 0 \end{pmatrix} \text{ or } \begin{pmatrix} z = 0 \\ y^2 - 1 = 0 \end{pmatrix}$ 3 cultical points: $\binom{1/2}{0}$, $\binom{0}{1}$ and $\binom{0}{-1}$. $H_{2}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 2 & 2y\\ 2y & 2x \end{pmatrix} = 2 \begin{pmatrix} 1 & y\\ y & z \end{pmatrix}$

Example

Study the critical points of $f(x, y) = x^2 + xy^2 - x + 1$. • $\operatorname{He} \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ is positive definite: (1/2) loc. • $H_{\mathfrak{P}}\begin{pmatrix} 0\\1 \end{pmatrix} = 2\begin{pmatrix} 1&1\\1&0 \end{pmatrix}$ these two matrices admits one $2 \operatorname{eigenvalue}$ and one • $H_{2}(-1) = 2(1-1)/(0)/(0)$ saddle points M is symmetric, it has 2 eigenvalues $\lambda_{4} \ge \lambda_{2}$ • $Tr(H) = 1 = \lambda_1 + \lambda_2 \longrightarrow \lambda_1 > 0$ • $\lambda_2 < 0$ because for 15 = (1, -1) we have $a_5 \text{ H}_{15} = -1$ therefore $\lambda_2 < 0$